metal-organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

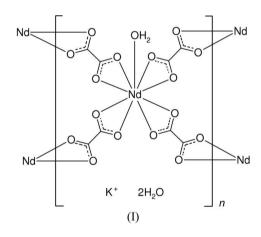
Ying-Hong Liu and Su-Zhi Li*

Institute of Molecular and Crystal Engineering, School of Chemistry and Chemical Engineering, Henan University, Kaifeng 475001, People's Republic of China

Correspondence e-mail: lisuzhi2005@sina.com

Key indicators

Single-crystal X-ray study T = 293 KMean σ (C–C) = 0.016 Å R factor = 0.054 wR factor = 0.120 Data-to-parameter ratio = 12.9


For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Poly[potassium aquadi-µ-oxalato-neodymium(III) dihydrate]

The title compound, $\{K[Nd(C_2O_4)_2(H_2O)] \cdot 2H_2O\}_n$, has been prepared hydrothermally. Every Nd^{III} atom is linked to four others through oxalate anions lying on centres of inversion, generating a three-dimensional anionic network with channels that contain K⁺ cations and water molecules.

Comment

Previously, some lanthanide oxalates have been reported with layered honeycomb network structures (Ollendorf & Weigel, 1969; Hansson, 1970, 1973; Trollet *et al.*, 1997). To produce open-framework lanthanide oxalates, the challenge is to connect layers of such complexes to construct three-dimensional architectures. We present here the structure of the title Nd^{III} complex, (I), which exhibits a three-dimensional network structure.

In (I), Nd^{III} is nine-coordinated by eight O atoms from four oxalate anions and one water molecule in a distorted monocapped square-antiprismatic geometry (Fig. 1). The Nd–O distances (Table 1) are closely comparable to the corresponding distances in $(NH_4)_2[Nd_2(C_2O_4)_3(CO_3)(H_2O)] \cdot H_2O$ (average Nd–O = 2.492 Å; Trombe *et al.*, 2002). Every Nd^{III} atom is linked to four others through oxalate anions lying on centres of inversion, generating a three-dimensional anionic network structure with formula $[Nd(C_2O_4)_2(H_2O)]^-$ (Fig. 2). This network exhibits channels running along [001], in which K⁺ cations and water molecules reside.

Experimental

All reagents and solvents were used as obtained without further purification. $K_{10}[P_2W_{17}O_{61}]\cdot 20H_2O$ was synthesized according to the procedure given by Contant (1990). Hydrothermal reaction of $K_{10}[P_2W_{17}O_{61}]\cdot 20H_2O$ (0.10 mmol), Nd_2O_3 (0.50 mmol), $(NH_4)_2C_2O_4$

© 2007 International Union of Crystallography All rights reserved Received 22 November 2006 Accepted 19 December 2006 (0.37 mmol), edta (0.25 mmol) and water (15 ml) at 473 K for 60 h yielded pink crystals of (I).

Z = 8

 $D_r = 2.487 \text{ Mg m}^{-3}$

 $0.26 \times 0.13 \times 0.11 \text{ mm}$

5056 measured reflections 1985 independent reflections

1531 reflections with $I > 2\sigma(I)$

H-atom parameters constrained

 $w = 1/[\sigma^{2}(F_{o}^{2}) + 55.1422P]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$

 $(\Delta/\sigma)_{\rm max} < 0.001$

 $\Delta \rho_{\text{max}} = 0.87 \text{ e} \text{ Å}^{-3}$

 $\Delta \rho_{\rm min} = -2.08 \text{ e} \text{ Å}^{-3}$

Mo $K\alpha$ radiation

 $\mu = 5.13 \text{ mm}^{-1}$

T = 293 (2) K

Block, pink

 $R_{\rm int} = 0.041$ $\theta_{\rm max} = 25.3^{\circ}$

Crystal data

K[Nd(C₂O₄)₂(H₂O)]·2H₂O $M_r = 413.43$ Monoclinic, C2/c a = 23.085 (5) Å b = 7.4913 (15) Å c = 12.941 (3) Å $\beta = 99.286$ (3)° V = 2208.6 (8) Å³

Data collection

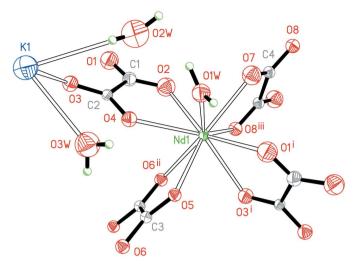
Rigaku R-AXIS-IV diffractometer ω scans Absorption correction: multi-scan (ABSCOR; Higashi, 1995) $T_{min} = 0.330, T_{max} = 0.569$

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.054$ $wR(F^2) = 0.120$ S = 1.281985 reflections 154 parameters

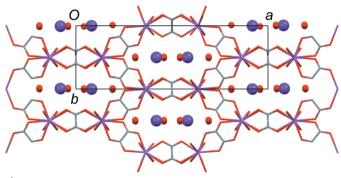
Table 1

Selected bond lengths (Å).


Nd1-O1 ⁱ	2.492 (8)	K1-O1 ^{iv}	3.161 (11)
Nd1-O2	2.502 (8)	K1-O3	2.781 (9)
Nd1-O3 ⁱ	2.527 (7)	$K1 - O5^{v}$	2.936 (8)
Nd1-O4	2.514 (8)	$K1 - O6^{vi}$	3.377 (9)
Nd1-O5	2.455 (7)	K1-O8 ^{vii}	2.857 (8)
$Nd1 - O6^{ii}$	2.444 (7)	$K1 - O1W^{v}$	3.336 (9)
Nd1-07	2.505 (8)	K1 - O2W	3.324 (13)
Nd1-O8 ⁱⁱⁱ	2.472 (8)	K1 - O3W	2.841 (11)
Nd1-O1W	2.432 (8)	$K1 - O3W^{vi}$	2.803 (10)
Summatry andas	(i) $x \rightarrow 1 \pi$	1, (ii) $x + 1, y$	+ 1 = + 1; (iii)

Symmetry codes: (i) $x, -y + 1, z - \frac{1}{2}$; (ii) -x + 1, -y + 1, -z + 1; (iii) $-x + \frac{3}{2}, -y + \frac{3}{2}, -z + 1$; (iv) x, y - 1, z; (v) $x, -y, z + \frac{1}{2}$; (vi) $-x + 1, y, -z + \frac{3}{2}$; (vii) $-x + \frac{3}{2}, y - \frac{1}{2}, -z + \frac{3}{2}$.

H atoms of the water molecules were placed at calculated positions so as to form reasonable $O-H \cdots O$ contacts, with O-H = 0.85 Å, and refined as riding, with $U_{iso}(H) = 1.5U_{iso}(O)$. The resulting H-atom positions are approximate. The water O atoms were restrained to approximately isotropic behaviour. The deepest hole in the residual electron density is located 1.05 Å from K1.


Data collection: *PROCESS-AUTO* (Rigaku, 1998); cell refinement: *PROCESS-AUTO*; data reduction: *CrystalStructure* (Rigaku/ MSC, 2004); program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *WinGX* (Farrugia, 1999); software used to prepare material for publication: *SHELXL97*.

Financial support is gratefully acknowledged from the Program for New Century Excellent Talents in University of

Figure 1

The asymmetric unit, expanded to show the complete coordination of the Nd^{III} atom, with displacement ellipsoids drawn at the 50% probability level. Symmetry codes as in Table 1.

Figure 2

View of (I) along [001], showing the $[Nd(C_2O_4)_2(H_2O)]^-$ network structure, with K⁺ cations (purple spheres) and water molecules (red spheres) residing in channels. H atoms have been omitted.

Henan Province, the Institute of Education of Henan Province and the Natural Science Foundation of Henan Province.

References

- Contant, R. (1990). Inorg. Synth. 27, 104-111.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.
- Hansson, E. (1970). Acta Chem. Scand. 24, 2969–2982.
- Hansson, E. (1973). Acta Chem. Scand. 27, 823–834.
- Higashi, T. (1995). ABSCOR. Rigaku Corporation. Tokyo, Japan.
- Ollendorf, W. & Weigel, F. (1969). Inorg. Nucl. Chem. Lett. 5, 263–269.
- Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.
- Rigaku/MSC (2004). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Trollet, D., Romero, S., Mosset, A. & Trombe, J.-C. (1997). C. R. Acad. Sci. Ser. IIb Mec. Phys. Chim. Astron. **325**, 663–670.
- Trombe, J.-C., Galy, J. & Enjalbert, R. (2002). Acta Cryst. C58, m517-m520.